3.9.45 \(\int \frac {1}{(d+e x)^4 (d^2-e^2 x^2)^{5/2}} \, dx\) [845]

Optimal. Leaf size=181 \[ \frac {8 x}{99 d^6 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {7}{99 d^2 e (d+e x)^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^3 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^4 e (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac {16 x}{99 d^8 \sqrt {d^2-e^2 x^2}} \]

[Out]

8/99*x/d^6/(-e^2*x^2+d^2)^(3/2)-1/11/d/e/(e*x+d)^4/(-e^2*x^2+d^2)^(3/2)-7/99/d^2/e/(e*x+d)^3/(-e^2*x^2+d^2)^(3
/2)-2/33/d^3/e/(e*x+d)^2/(-e^2*x^2+d^2)^(3/2)-2/33/d^4/e/(e*x+d)/(-e^2*x^2+d^2)^(3/2)+16/99*x/d^8/(-e^2*x^2+d^
2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {673, 198, 197} \begin {gather*} -\frac {7}{99 d^2 e (d+e x)^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {16 x}{99 d^8 \sqrt {d^2-e^2 x^2}}+\frac {8 x}{99 d^6 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^4 e (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^3 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^4*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

(8*x)/(99*d^6*(d^2 - e^2*x^2)^(3/2)) - 1/(11*d*e*(d + e*x)^4*(d^2 - e^2*x^2)^(3/2)) - 7/(99*d^2*e*(d + e*x)^3*
(d^2 - e^2*x^2)^(3/2)) - 2/(33*d^3*e*(d + e*x)^2*(d^2 - e^2*x^2)^(3/2)) - 2/(33*d^4*e*(d + e*x)*(d^2 - e^2*x^2
)^(3/2)) + (16*x)/(99*d^8*Sqrt[d^2 - e^2*x^2])

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 673

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d + e*x)^m*((a + c*x^2)^(p +
1)/(2*c*d*(m + p + 1))), x] + Dist[Simplify[m + 2*p + 2]/(2*d*(m + p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^
p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[Simplify[m + 2*p +
 2], 0]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x)^4 \left (d^2-e^2 x^2\right )^{5/2}} \, dx &=-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {7 \int \frac {1}{(d+e x)^3 \left (d^2-e^2 x^2\right )^{5/2}} \, dx}{11 d}\\ &=-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {7}{99 d^2 e (d+e x)^3 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {14 \int \frac {1}{(d+e x)^2 \left (d^2-e^2 x^2\right )^{5/2}} \, dx}{33 d^2}\\ &=-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {7}{99 d^2 e (d+e x)^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^3 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {10 \int \frac {1}{(d+e x) \left (d^2-e^2 x^2\right )^{5/2}} \, dx}{33 d^3}\\ &=-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {7}{99 d^2 e (d+e x)^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^3 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^4 e (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac {8 \int \frac {1}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{33 d^4}\\ &=\frac {8 x}{99 d^6 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {7}{99 d^2 e (d+e x)^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^3 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^4 e (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac {16 \int \frac {1}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{99 d^6}\\ &=\frac {8 x}{99 d^6 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {1}{11 d e (d+e x)^4 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {7}{99 d^2 e (d+e x)^3 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^3 e (d+e x)^2 \left (d^2-e^2 x^2\right )^{3/2}}-\frac {2}{33 d^4 e (d+e x) \left (d^2-e^2 x^2\right )^{3/2}}+\frac {16 x}{99 d^8 \sqrt {d^2-e^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.51, size = 115, normalized size = 0.64 \begin {gather*} \frac {\sqrt {d^2-e^2 x^2} \left (-28 d^7-13 d^6 e x+72 d^5 e^2 x^2+122 d^4 e^3 x^3+32 d^3 e^4 x^4-72 d^2 e^5 x^5-64 d e^6 x^6-16 e^7 x^7\right )}{99 d^8 e (d-e x)^2 (d+e x)^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^4*(d^2 - e^2*x^2)^(5/2)),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-28*d^7 - 13*d^6*e*x + 72*d^5*e^2*x^2 + 122*d^4*e^3*x^3 + 32*d^3*e^4*x^4 - 72*d^2*e^5*x^
5 - 64*d*e^6*x^6 - 16*e^7*x^7))/(99*d^8*e*(d - e*x)^2*(d + e*x)^6)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(319\) vs. \(2(157)=314\).
time = 0.48, size = 320, normalized size = 1.77

method result size
gosper \(-\frac {\left (-e x +d \right ) \left (16 e^{7} x^{7}+64 e^{6} x^{6} d +72 e^{5} x^{5} d^{2}-32 d^{3} e^{4} x^{4}-122 d^{4} e^{3} x^{3}-72 d^{5} e^{2} x^{2}+13 x \,d^{6} e +28 d^{7}\right )}{99 \left (e x +d \right )^{3} d^{8} e \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}\) \(110\)
trager \(-\frac {\left (16 e^{7} x^{7}+64 e^{6} x^{6} d +72 e^{5} x^{5} d^{2}-32 d^{3} e^{4} x^{4}-122 d^{4} e^{3} x^{3}-72 d^{5} e^{2} x^{2}+13 x \,d^{6} e +28 d^{7}\right ) \sqrt {-e^{2} x^{2}+d^{2}}}{99 d^{8} \left (e x +d \right )^{6} \left (-e x +d \right )^{2} e}\) \(112\)
default \(\frac {-\frac {1}{11 d e \left (x +\frac {d}{e}\right )^{4} \left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}+\frac {7 e \left (-\frac {1}{9 d e \left (x +\frac {d}{e}\right )^{3} \left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}+\frac {2 e \left (-\frac {1}{7 d e \left (x +\frac {d}{e}\right )^{2} \left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}+\frac {5 e \left (-\frac {1}{5 d e \left (x +\frac {d}{e}\right ) \left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}+\frac {4 e \left (-\frac {-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e}{6 d^{2} e^{2} \left (-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}-\frac {-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e}{3 e^{2} d^{4} \sqrt {-e^{2} \left (x +\frac {d}{e}\right )^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{5 d}\right )}{7 d}\right )}{3 d}\right )}{11 d}}{e^{4}}\) \(320\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^4/(-e^2*x^2+d^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/e^4*(-1/11/d/e/(x+d/e)^4/(-e^2*(x+d/e)^2+2*d*e*(x+d/e))^(3/2)+7/11*e/d*(-1/9/d/e/(x+d/e)^3/(-e^2*(x+d/e)^2+2
*d*e*(x+d/e))^(3/2)+2/3*e/d*(-1/7/d/e/(x+d/e)^2/(-e^2*(x+d/e)^2+2*d*e*(x+d/e))^(3/2)+5/7*e/d*(-1/5/d/e/(x+d/e)
/(-e^2*(x+d/e)^2+2*d*e*(x+d/e))^(3/2)+4/5*e/d*(-1/6*(-2*e^2*(x+d/e)+2*d*e)/d^2/e^2/(-e^2*(x+d/e)^2+2*d*e*(x+d/
e))^(3/2)-1/3/e^2/d^4*(-2*e^2*(x+d/e)+2*d*e)/(-e^2*(x+d/e)^2+2*d*e*(x+d/e))^(1/2))))))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 351 vs. \(2 (151) = 302\).
time = 0.30, size = 351, normalized size = 1.94 \begin {gather*} -\frac {1}{11 \, {\left ({\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d x^{4} e^{5} + 4 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{2} x^{3} e^{4} + 6 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{3} x^{2} e^{3} + 4 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{4} x e^{2} + {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{5} e\right )}} - \frac {7}{99 \, {\left ({\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{2} x^{3} e^{4} + 3 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{3} x^{2} e^{3} + 3 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{4} x e^{2} + {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{5} e\right )}} - \frac {2}{33 \, {\left ({\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{3} x^{2} e^{3} + 2 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{4} x e^{2} + {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{5} e\right )}} - \frac {2}{33 \, {\left ({\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{4} x e^{2} + {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{5} e\right )}} + \frac {8 \, x}{99 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{6}} + \frac {16 \, x}{99 \, \sqrt {-x^{2} e^{2} + d^{2}} d^{8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^4/(-e^2*x^2+d^2)^(5/2),x, algorithm="maxima")

[Out]

-1/11/((-x^2*e^2 + d^2)^(3/2)*d*x^4*e^5 + 4*(-x^2*e^2 + d^2)^(3/2)*d^2*x^3*e^4 + 6*(-x^2*e^2 + d^2)^(3/2)*d^3*
x^2*e^3 + 4*(-x^2*e^2 + d^2)^(3/2)*d^4*x*e^2 + (-x^2*e^2 + d^2)^(3/2)*d^5*e) - 7/99/((-x^2*e^2 + d^2)^(3/2)*d^
2*x^3*e^4 + 3*(-x^2*e^2 + d^2)^(3/2)*d^3*x^2*e^3 + 3*(-x^2*e^2 + d^2)^(3/2)*d^4*x*e^2 + (-x^2*e^2 + d^2)^(3/2)
*d^5*e) - 2/33/((-x^2*e^2 + d^2)^(3/2)*d^3*x^2*e^3 + 2*(-x^2*e^2 + d^2)^(3/2)*d^4*x*e^2 + (-x^2*e^2 + d^2)^(3/
2)*d^5*e) - 2/33/((-x^2*e^2 + d^2)^(3/2)*d^4*x*e^2 + (-x^2*e^2 + d^2)^(3/2)*d^5*e) + 8/99*x/((-x^2*e^2 + d^2)^
(3/2)*d^6) + 16/99*x/(sqrt(-x^2*e^2 + d^2)*d^8)

________________________________________________________________________________________

Fricas [A]
time = 2.16, size = 250, normalized size = 1.38 \begin {gather*} -\frac {28 \, x^{8} e^{8} + 112 \, d x^{7} e^{7} + 112 \, d^{2} x^{6} e^{6} - 112 \, d^{3} x^{5} e^{5} - 280 \, d^{4} x^{4} e^{4} - 112 \, d^{5} x^{3} e^{3} + 112 \, d^{6} x^{2} e^{2} + 112 \, d^{7} x e + 28 \, d^{8} + {\left (16 \, x^{7} e^{7} + 64 \, d x^{6} e^{6} + 72 \, d^{2} x^{5} e^{5} - 32 \, d^{3} x^{4} e^{4} - 122 \, d^{4} x^{3} e^{3} - 72 \, d^{5} x^{2} e^{2} + 13 \, d^{6} x e + 28 \, d^{7}\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{99 \, {\left (d^{8} x^{8} e^{9} + 4 \, d^{9} x^{7} e^{8} + 4 \, d^{10} x^{6} e^{7} - 4 \, d^{11} x^{5} e^{6} - 10 \, d^{12} x^{4} e^{5} - 4 \, d^{13} x^{3} e^{4} + 4 \, d^{14} x^{2} e^{3} + 4 \, d^{15} x e^{2} + d^{16} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^4/(-e^2*x^2+d^2)^(5/2),x, algorithm="fricas")

[Out]

-1/99*(28*x^8*e^8 + 112*d*x^7*e^7 + 112*d^2*x^6*e^6 - 112*d^3*x^5*e^5 - 280*d^4*x^4*e^4 - 112*d^5*x^3*e^3 + 11
2*d^6*x^2*e^2 + 112*d^7*x*e + 28*d^8 + (16*x^7*e^7 + 64*d*x^6*e^6 + 72*d^2*x^5*e^5 - 32*d^3*x^4*e^4 - 122*d^4*
x^3*e^3 - 72*d^5*x^2*e^2 + 13*d^6*x*e + 28*d^7)*sqrt(-x^2*e^2 + d^2))/(d^8*x^8*e^9 + 4*d^9*x^7*e^8 + 4*d^10*x^
6*e^7 - 4*d^11*x^5*e^6 - 10*d^12*x^4*e^5 - 4*d^13*x^3*e^4 + 4*d^14*x^2*e^3 + 4*d^15*x*e^2 + d^16*e)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{\frac {5}{2}} \left (d + e x\right )^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**4/(-e**2*x**2+d**2)**(5/2),x)

[Out]

Integral(1/((-(-d + e*x)*(d + e*x))**(5/2)*(d + e*x)**4), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^4/(-e^2*x^2+d^2)^(5/2),x, algorithm="giac")

[Out]

integrate(1/((-x^2*e^2 + d^2)^(5/2)*(x*e + d)^4), x)

________________________________________________________________________________________

Mupad [B]
time = 0.81, size = 197, normalized size = 1.09 \begin {gather*} \frac {\sqrt {d^2-e^2\,x^2}\,\left (\frac {215\,x}{1584\,d^6}-\frac {91}{792\,d^5\,e}\right )}{{\left (d+e\,x\right )}^2\,{\left (d-e\,x\right )}^2}-\frac {\sqrt {d^2-e^2\,x^2}}{44\,d^3\,e\,{\left (d+e\,x\right )}^6}-\frac {4\,\sqrt {d^2-e^2\,x^2}}{99\,d^4\,e\,{\left (d+e\,x\right )}^5}-\frac {79\,\sqrt {d^2-e^2\,x^2}}{1584\,d^5\,e\,{\left (d+e\,x\right )}^4}-\frac {29\,\sqrt {d^2-e^2\,x^2}}{528\,d^6\,e\,{\left (d+e\,x\right )}^3}+\frac {16\,x\,\sqrt {d^2-e^2\,x^2}}{99\,d^8\,\left (d+e\,x\right )\,\left (d-e\,x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d^2 - e^2*x^2)^(5/2)*(d + e*x)^4),x)

[Out]

((d^2 - e^2*x^2)^(1/2)*((215*x)/(1584*d^6) - 91/(792*d^5*e)))/((d + e*x)^2*(d - e*x)^2) - (d^2 - e^2*x^2)^(1/2
)/(44*d^3*e*(d + e*x)^6) - (4*(d^2 - e^2*x^2)^(1/2))/(99*d^4*e*(d + e*x)^5) - (79*(d^2 - e^2*x^2)^(1/2))/(1584
*d^5*e*(d + e*x)^4) - (29*(d^2 - e^2*x^2)^(1/2))/(528*d^6*e*(d + e*x)^3) + (16*x*(d^2 - e^2*x^2)^(1/2))/(99*d^
8*(d + e*x)*(d - e*x))

________________________________________________________________________________________